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Abstract

We present optimization methods for functions whose domain lies on Grassmann Manifold.
Such functions are ubiquitous because data with subspace-structured features, orthogonality,
or low-rank constraints is naturally expressed using Grassmann manifold. We consider two
different representations of the Grassmann manifold: a quotient of the Stiefel manifold and a
set of projectors. We then develop Grassmannian gradient descent and Grassmannian Newton
method on these representations. We demonstrate the efficiency of Grassmannian algorithms
by optimizing Rayleigh quotient and conclude that our algorithms converge faster, generalize
better and perform as well as the best-known problem-specific algorithms.
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Chapter 1

Introduction

Constrained optimization is the process of optimizing an objective function with respect to
some variables with the presence of constraints on those variables. In our paper, we consider
geometric constraints, which express that the solution to the optimization problem lies on a
manifold. Specifically, we consider problems where the solution lies on the Grassmann manifold
- G(p, n) a set of p dimensional subspaces in a higher n-dimensional space. Such problems
are ubiquitous because data with subspace-structured features, orthogonality constraints, or
low-rank constraints can be naturally expressed using the Grassmann manifold. For example,
symmetric eigenvalue problems, nonlinear eigenvalue problems, electronic structure computa-
tions, and signal processing can all be optimized over G(p, n). In our paper, we first show how
the Grassmann manifold can be considered as a quotient manifold and as a set of projectors.
Then, we develop Gradient Descent and Newton’s algorithm on the Grassmann manifold and
study its applications to eigenvalue and eigenvector computations.

A framework for algorithms involving these constraints was first introduced by Edelman et al
[EAS98] . They used a quotient manifold representation to develop the Newton algorithm, which
inspired a line of works that improve the algorithm or find a different application [HL] [MKP20]
[Joh21] [TFBJ18]. A set of projectors approach was introduced by Helmke et al [HHT07],
and used to develop Newton algorithms on Grassmannand Lagrange–Grassmann manifolds.
While the mentioned representations (set of projectors and quotient manifold) are employed
in our paper, they are certainly not exhaustive. For example, Lai et al [LLY20] represent the
Grassmann manifold as symmetric orthogonal matrices of trace 2k − n. Extensive resources
for learning about Riemannian optimization are books by Absil [AMS08] and Boumal [Bou22]
Moreover, there are some programming frameworks for R, Python, Julia, and Matlab that
implemented Grassmannian optimization such as GrassmannOptim [ACW12], and ManOpt
[TKW16]. The recent success of geometric deep learning [BBCV21] [MBBV18], shows the
importance of exploiting the underlying geometric structure to improve learning. Some attempts
to construct a Grassmannian DNN have already been made [ZZHJH18] [HWVG18], but there
are many challenges to overcome for them to appear in the industry.

There is a huge amount of digital data that we can use to extract valuable insights and
predictions. Any time-series data like stock price, electrocardiogram data, or video data can
be considered as points on the Grassmann manifold. Thus the development of Grassmannian
optimization algorithms will help us make discoveries, reduce data size, and do it faster than
classical optimization algorithms. Moreover, by exploring the optimization algorithms on the
Grassmann manifold, we will be taking a first step towards defining a Grassmannian deep neural
network. By embedding the geometry in a neural network we will develop models with better
accuracy and robustness.

Our contribution is the following. We present the optimization algorithms on the Grassmann
manifold and show that they have lower time complexity than classical Euclidean algorithms.
Next, we show how exploiting the underlying geometry of data can benefit optimization. Finally,
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we set the ground for the future research developments in Grassmannian Deep Learning.
We will start by describing a sphere as a smooth manifold and showing that the sphere S2

is equivalent to S(1, 3). Then, we will take a look at an example of the Grassmannian which is
a sphere with identified antipodal points G(1, 3). We will use this example to set the ground for
the general G(p, n) case. Then in Chapter 3, we will prove that the Grassmannian is a smooth
manifold and show two of its representations. In the same chapter, we will derive all equations
needed to create a mathematical setup for optimization algorithms. In chapter 4 we presented
three different optimization algorithms and provided pseudocode for them. Finally, in Chapter
5 we demonstrate all presented algorithms on the problem of minimizing the Rayleigh quotient.
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Chapter 2

G(1, 3) As Manifold

2.1 Preliminaries

We begin by recalling briefly some standard definitions.

Definition 2.1.1. (X, T ) is a locally Euclidean topological space of dimension n if ∀ p ∈
X ∃ v ⊆ X which is homeomorphic to an open in Rn.

Definition 2.1.2. A topological manifold of dimension n is a locally Euclidean space of
dimension n, which is Hasudorff and has a countable base for its topology.

Definition 2.1.3. A smooth atlas is a collection of charts {(vα, φα)}α,
⋃

α vα = X, s.t. for
any two charts (vα, φα), and (vβ, φβ) the transition map φαβ = φα ◦ φ−1

β : φβ(vα ∩ vβ) →
φα(vα ∩ vβ) is infinitely differentiable (C∞). An atlas is maximal if it is not contained in
another atlas.

It is not hard to see that each atlas is contained in a unique maximal atlas.

Definition 2.1.4. A smooth manifold is a manifold together with a maximal smooth atlas
on it. The choice of maximal atlas is also called a smooth structure on the manifold.

Practically, one never works directly with the chosen maximal atlas. In fact, it is usu-
ally preferable to work with an atlas that contains as few charts as possible. To specify the
smooth structure (maximal atlas) it is enough to choose one particular smooth atlas – and that
determines (implicitly) a maximal atlas.

For different problems different atlasses may be appropriate. To see that two smooth atlasses
belong to (determine) the same maximal atlas, one needs to verify that their union is again a
smooth atlas. In such a case one also says that the two atlasses are equivalent. This determines
an equivalence relation on the set of all atlasses, and the choice of maximal atlas corresponds
to a choice of an equivalence class of smooth atlasses.

Let us reiterate that, for a given topological space X, being a topological manifold is a
property – X either is or is not one, while being a smooth manifold is an additional data
on X – the data of a maximal atlas (smooth structure). Some spaces admit such an extra
structure, while others do not. Those topological manifolds that admit smooth structure in fact
admit infinitely many smooth structures.

Occasionally in this text we are going to abuse the terminology and say, e.g., X is a smooth
manifold, which will mean X can be equipped with a smooth structure – and a particular choice
of smooth structure will be given.

2.2 Example: the 2-sphere as a smooth manifold

Proposition 2.2.1. Sphere S2 is a smooth manifold.
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First let’s state a lemma that will help us prove the proposition.

Lemma 2.2.1. Let f : U ⊂ Rn → Rm. Suppose the partial derivatives ∂fi
∂xj

of f all exist and

are continuous in a neighbourhood of a point x ∈ U . Then f is differentiable at x.

The proof for this lemma can be found in any vector calculus textbook [MT88]. Now we proceed
with the proof of the proposition.

Proof. Let’s denote a sphere as:

M = S2 = {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1} (2.1)

Also, we define a disk with a center at (x0, y0) and radius ϵ as:

Dϵ(x0, y0) = {(x, y) ∈ R2 : (x− x0)
2 + (y − y0)

2 < ϵ2}

Thus we can cover the sphere with 6 charts and 6 functions, described as follows:

u+i = S2 ∩ {xi > 0}, u−i = S2 ∩ {xi < 0}

φ+
i : u+i → D1(0, 0), φ(x1, x2, x3) = (. . . x̂i . . . )

φ−
i : u−i → D1(0, 0), φ(x1, x2, x3) = (. . . x̂i . . . )

Then the atlas covering the sphere is:

A1 = {(u±i , φ
±
i ) : i ∈ I}, I = {1, 2, 3}

For example φ+
3 : u+3 → R2, φ+

3 (x1, x2, x3) = (x1, x2, x̂3) = (x1, x2)

We first show that a function φ+
3 : u+3 → R is injective.

Assume ∃ P1 and P2 s.t. P1 = (p1, p2, p3), and P2 = (p′1, p
′
2, p

′
3), P1 ̸= P2, and f(P1) = f(P2)

implies that (p1, p2) = (p′1, p
′
2) Because P1 and P2 are the points on the sphere:

p′3 = ±
√

1− p21 − p22 ± p′3 = ±
√
1− (p′1)

2 − (p′2)
2

Since u+3 has only positive numbers for a third coordinate

p3 = p′3 =⇒ (p1, p2, p3) = (p′1, p
′
2, p

′
3) =⇒ P1 = P2

We can conclude that φ+
3 is injective.

To show that φ±
i is injective, we similarly assume that ∃ P1P2, s.t. P1 ̸= P2 and φ±

i (P1) =

φ±
i (P2). Let K = {1, 2, 3}/i. Then ∀ k ∈ K, ak = a′k ai = ±

√
1−

∑
(a2k) = a′i. Since ai and

a′i are limited to only positive or only negative values P1 = P2, and φ
±
i is injective.

To prove surjectivity, consider (φ±
i )

−1 componentwise. It sends an arbitary point (b1, b2) ∈
D1(0, 0) to a point (a1, a2, a3) ∈ S2, or componentwise

aj =


bj j < i√

1− b21 − b22 j = i

bj−1 j > i

Since each component in both S2 and the disk varies from 0 to 1, each point in the codomain
is mapped to, and we have surjectivity for φ±

i .
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Each function φ±
i is continuous (and in fact differentiable) since it is the restriction to u±i of

a linear map R3 → R2, and S2 is equipped with the subspace topology. The maps
(
φ±
i

)−1

are continuous (and in fact, differentiable), since they are continuous (in fact, differentiable) as
maps D1(0, 0) → R3 by Lemma 2.2.1. Therefore φ±

i are homeomorphisms.
The sphere S2 is Hausdorff and second countable since it is a subspace of R3.
We now show that A is a smooth atlas. First we consider the transition function

φ3 ◦ φ−1
1 : ϕ1(u

+
1 ∩ u+3 ) −→ ϕ3(u

+
1 ∩ u+3 )

(x, y) 7→ (
√
x2 + y2, x, y) 7→ (

√
x2 + y2, x).

Both ϕ1(u
+
1 ∩ u+3 ) and ϕ3(u

+
1 ∩ u+3 ) are open half-disks in R2:

ϕ1(u
+
1 ∩ u+3 ) = {(x1, x2) ∈ D1(0, 0), x2 > 0},

ϕ3(u
+
1 ∩ u+3 ) = {(x1, x2) ∈ D1(0, 0), x1 > 0},

and so both transition functions are infinitely differentiable, by Lemma 2.2.1. Notice that on
the boundary of D1(0, 0) differentiability is lost.

Similarly, we can show that all transition functions are C∞. This proves that the sphere is
a smooth manifold.

In the next section we provide another (equivalent) atlas that uses fewer charts.

2.3 Sphere as a smooth manifold using stereographic projection

Proof. Stereographic projection 2.3 is a map that will allow us to endow the sphere with smooth
structure by using 2 charts.

Figure 2.1: Stereographic Projection Visualized

v+ = S2 \ {(0, 0,−1)} v− = S2 \ {(0, 0, 1)}
We think of map ϕ− as drawing a line through the point on the north pole (0, 0, 1) and (x, y, z),
then the output is the point where the line intersects z plane. Similarly for ϕ+, we project from
the south pole (0, 0,−1). We get the maps explicitly by parametrizing the line:

l : (0, 0, 1) + t((x1, x2, x3)− (0, 0, 1)) = (x1t, x2t, x3t− t+ 1)
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l intersects x3 = 0 when x3t− t+ 1 =, thus t = 1
(1−x3)

It follows that the point of intersection

is ( x1
1−x3

, x2
1−x3

, 0) Similarly we can explicitly find ϕ+

ϕ+ : v+ → R2, (x1, x2, x3) → (
x1

1 + x3
,

x2
1 + x3

)

ϕ− : v− → R2, (x1, x2, x3) → (
x1

1− x3
,

x2
1− x3

)

We can find the inverses in the similar way. Consinder points on the z = 0 plane in R3 (α, β, 0).
We parametrize the line through this point and north pole:

l : (0, 0, 1) + t((α, β, 0)− (0, 0, 1)) = (αt, βt,−t+ 1)

We need to see when are these points going to be on the sphere , i.e.

(αt)2 + (βt)2 + (−t+ 1)2 = 1

α2t2 + β2t2 + t2 − 2t+ 1 = 1

t2(α2 + β2 + 1− 2

t
) = 0

∴ t =
2

α2 + β2 + 1

ϕ−1
+ : R2 → v+ (α, β) → (

2α

1 + α2 + β2
,

2β

1 + α2 + β2
,−α

2 + β2 − 1

α2 + β2 + 1
)

ϕ−1
− : R2 → v− (α, β) → (

2α

1 + α2 + β2
,

2β

1 + α2 + β2
,
α2 + β2 − 1

α2 + β2 + 1
)

Since we explicitly found an inverse, the function is a bijection.
And it’s easy to see that ϕ is continuous by lemma 2.2.1 (denom never zero) Thus we equipped
the sphere with the following atlas:

A2 = {(v±, ϕ±)}

We can check that the transition maps from A1 to A2 are smooth.
First we check for φ+

3 ◦ ϕ−1
+ where

φ+
3 : S2 ∩ x3 > 0 = u+3 → D1(0, 0) ⊂ R2

ϕ−1
+ : R2 → v+ = S2 \ {(0, 0,−1)}

Now, since we require that the domain of φ+
3 is positive, the following is how our transition

function will look like

φ+
3 ◦ ϕ−1

+ : D1(0, 0) → D1(0, 0), φ+
3 (ϕ

−1
+ (x1, x2)) = (

2x1
1 + x21 + x22

,
2x2

1 + x21 + x22
)

ϕ−1
+ ◦ φ+

3 : D1(0, 0) → D1(0, 0), ϕ+(φ
+
3 ((x1, x2))

−1) = (
x1

1 +
√

1− x21 − x22
,

x1

1 +
√

1− x21 − x22
)

It is smooth componentwise and thus smooth. Next, we list the domain and the image for the
rest of transition maps.

φ−
3 ◦ ϕ−1

+ : R2 \ D̄1(0, 0) → D1(0, 0) \ (0, 0)
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φ+
2 ◦ ϕ−1

+ : R2 ∩ {x2 > 0} → D1(0, 0)

φ+
1 ◦ ϕ−1

+ : R2 ∩ {x1 > 0} → D1(0, 0)

φ−
2 ◦ ϕ−1

+ : R2 ∩ {x2 < 0} → D1(0, 0)

φ−
1 ◦ ϕ−1

+ : R2 ∩ {x1 < 0} → D1(0, 0)

φ+
3 ◦ ϕ−1

− : R2 \ D̄1(0, 0) → D1(0, 0) \ (0, 0)

φ−
3 ◦ ϕ−1

− : D1(0, 0) → D1(0, 0)

φ+
2 ◦ ϕ−1

+ : R2 ∩ {x2 > 0} → D1(0, 0)

φ+
1 ◦ ϕ−1

+ : R2 ∩ {x1 > 0} → D1(0, 0)

φ−
2 ◦ ϕ−1

+ : R2 ∩ {x2 < 0} → D1(0, 0)

φ−
1 ◦ ϕ−1

+ : R2 ∩ {x1 < 0} → D1(0, 0)

Therefore, we proved that a sphere S2 is a smooth manifold of dimension 2.

The two smooth atlasses – the one from this section and the one described earlier – are in
fact equivalent, i.e., determine the same maximal atlas.

2.4 G(1, 3) as quotient manifold

As mentioned in the introduction, we define the Grassmannian of p-dimensional subspaces in
Rn as the set

G(p, n) = {V ⊆ Rn vector subspace, dimV = p} .

Each p-dimensional subspace V ⊆ Rn is spanned by p linearly independent vectors in Rn, and
such a p-tuple of vectors can be thought of as an n×pmatrix of rank p. Let F (n, p) ⊆ Matn×p(R)
be the set of all such matrices, i.e., all “p-frames” in Rn. There are infinitely many different
matrices that determine the same subspace V – since there are infinitely many choices of basis.
In section 3.1 we show that there is a bijection between G(p, n) and a suitable quotient of
F (n, p) – and hence G(p, n) can be equipped with a natural topology. It is in fact a topological
manifold and admits a smooth structure, that we describe in section 3.1.

Let us also define the Stiefel manifold as:

St(p, n) = {A ∈Matn×p(R) | rkA = p, ATA = Ik} ⊆ Matn×p(R). (2.2)

This is in fact a compact embedded submanifold of Matn×p(R) ≃ Rnp, and its points are
orthonormal p-frames in Rn. Every p-dimensional subspace of Rn has an orthonormal basis, so
there is a set-theoretical (in fact, smooth!) map

St(p, n) −→ G(p, n),

sending each orthonormal frame to the plane that it spans. If p > 1, there are infinitely many
different orthonormal frames that span the same p-dimensional subspace, and one can represent
G(p, n) as a quotient space of St(p, n). In the literature, the Stiefel manifold is usually denoted
Vp(Rn) or Vn,p.

Let us spell out these objects in the simple case n = 3, p = 1.
First, F (3, 1) = R3\{0}, the set of non-zero vectors in R3. Two non-zero vectors span the

same line if they are related through rescaling by a non-zero number λ ∈ R× = R\{0}, hence

G(1, 3) = (R3\{0})
/
∼ = (R3\{0})

/
R× = RP2.
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Next, St(1, 3) is just the 2-sphere in R3. Indeed, St(1, 3) = {A ∈ R3×1 | rkA = 1, ATA =
1} = {A ∈ R3 | ATA = 1} = {(A1, A2, A3) ∈ R3 | A2

1+A
2
2+A

2
3 = 1)} we see that this is exactly

the equation of the sphere from 2.1. Thus, S2 = St(1, 3).
Two unit vectors in R3 span the same line if and only if they differ by a sign, so if we

introduce on S2 the equivalence relation ∼ by declaring u ∼ v when v = −u (or u = v), we get

G(1, 3) = RP2 ≃ St(1, 3)/∼ = S2
/
Z/2Z.

I.e., if we quotient the Stiefel manifold with this relation, we get a sphere with antipodal
points identified, namely:

St(1, 3)/∼ = {(A1, A2, A3) |A3 ≥ 0} ∪ {(A1, A2, 0) | A2 ≥ 0) ∪ {(A1, 0, 0)}

The Stiefel manifold St(1, 3) = S2 can be described as a quotient, St(1, 3) ≃ O3(R)/O2(R).

Here we identify O2(R) as the subgroup of O3(R), consisting of matrices

(
1 0
0 Q

)
, where Q ∈

O2(R). In this description, a unit vector A ∈ St(1, 3) = S2, corresponds to an equivalence class
of 3× 3 matrices, all having the same first column equal to A.

Correspondingly, G(1, 3) = RP2 is identified with either O3/O1 ×O2 or S2/O1.

2.5 G(1, 3) as a set of projectors

We can easily see that G(1, 3) ∼= RP2. Consider a set of projectors X ⊆Mat3×3(R),

X = {M |MT =M, M2 =M, TrM = 1}

If we describe the embedding from RP2 to X, we will understand why we can consider a sphere
with antipodal points identified as a set of projectors.

Proposition 2.5.1. There is an embedding from RP2 to X ⊆Mat3×3(R) ∼= R9

Proof. We know that X consists of matrices that are symmetric, idempotent and whose eigen-
values add up to one. Spectral theorem tells us that a real symmetric matrix is diagonizable.
We can also show that the eigenvectors of symmetric matrices, with distinct eigenvalues, are
orthogonal. Indeed, let x and y be eigenvectors of a symmetric matrix M , with eigenvalues λ
and µ, λ ̸= µ:

λ⟨x, y⟩ = ⟨λx, y⟩ = ⟨Mx, y⟩ = ⟨xMT , y⟩ = ⟨x,My⟩ = ⟨x, µy⟩ = µ⟨x, y⟩

Therefore (λ − µ)⟨x, y⟩ = 0, since λ and µ are distinct xy=0, thus orthogonal. Next, we can
show that the eigenvalues of M can be only 0 and 1. Let v be an eigenvector, of eigenvalue λ.

Mv = λv

M2v =M(λv) = λM(v) = λ2v

As v̄ ̸= 0 (λ2 − λ)v = 0 ⇐⇒ λ2 − λ = 0. Then solving for λ2 − λ = 0, we get that λ can
only be 0 or 1. Finally, the fact that Tr(M) = 1 tells us that eigenvalues of M are 0,0 and 1.
Therefore dimkerM = 2 and dim Im(M) = 1. This is telling us that there is a whole plane,
that is sent to zero vector by M , and all vectors in the image are sitting on a line.
Thus, applying a matrix operator M to a vector, is equivalent to projecting a vector to a line
in R3. So M : R3 → R3 is the operator of orthogonal projection on the line Im(M).
Now, let’s explicitly define a map ϕ, which to given line in R3 assigns a corresponding matrix
operator, that will orthogonally project all the vectors in R3 to that line.

ϕ : RP2 →Mat3×3 ϕ([x : y : z]) → A

9



To explicitly find A, note that we first need to find a unit vector along a line [x : y : z] ∈ RP2,
we can do that by normalizing coordinates. n = 1√

x2+y2+z2
[x, y, z]T . Finally, to orthogonally

project any v ∈ R3 along n, we apply (vn)n = v n⊗ n. We can then define ϕ as follows:

ϕ([x : y : z]) =
1√

x2 + y2 + z2
2 [x, y, z]

T ⊗ [x, y, z] =
1

x2 + y2 + z2

x2 xy xz
xy y2 yz
xz yz z2


Now, we redefine ϕ : RP2 → R6, because Mat3×3 ⊇ Sym3×3 ≃ R6.

Definition 2.5.1. Immersion Let X and Y be smooth manifolds, dimX = n, dimY = k. Let
f : X → Y be a smooth map. We say that f is a

� submersion, if dfp is surjective ∀p ∈ X

� immersion, if dfp is injective ∀pinX equivalently if rankDpf = dimM,M = f(X)

Definition 2.5.2. Let f : X → Y be a smooth map of smooth manifolds. We say that f is an
embedding if

� f is an injective immersion

� X is homeomorphic to f(X) ⊂ Y (equipped with the subspace topology)

Theorem 2.5.1. If X is a compact smooth manifold, and injective immersion f : X → Y is
an embedding.

Next, we argue that ϕ : RP2 → R6 is an embedding (R6 because we are taking only non-
symmetric lower triangular entries) Namely, we will show that the following function is an
embedding.

ϕ([x : y : z]) =
1

x2 + y2 + z2
(x2, xy, xz, y2, yz, z2)

First, we show that ϕ is well defined. Take two vectors a,b ∈ [x : y : z] on the same line. If a is
given by a = [a1, a2, a3] then b = [ka1, ka2, ka3] for k ∈ R. We need to show that ϕ([a]) = ϕ([b]).

ϕ([a1, a2, a3]) =
(a21, a1a2, a

2
2, a2a3, a

2
3)

a21 + a22 + a23

ϕ([ka, kb, kc]) =
(k2a21, k

2a1a2, k
2a22, k

2a2a3, k
2a23)

k2a21 + k2a22 + k2a23
=
k2(a21, a1a2, a

2
2, a2a3, a

2
3)

k2(a21 + a22 + a23)
=

(a21, a1a2, a
2
2, a2a3, a

2
3)

a21 + a22 + a23

Now that we showed that ϕ is well-defined, we show that it is injective.
Assume that ϕ is not injective, then there are unit vectors a = [a1, a2, a3] and b = [b1, b2, b3]
lying on different lines such that ϕ([a]) = ϕ([b]) In other words a ∈ [x : y : z] and b ∈ [x′ : y′ : z′]

ϕ([a1, a2, a3]) = (a21, a1a2, a
2
2, a2a3, a

2
3)

ϕ([b1, b2, b3]) = (b21, b1b2, b
2
2, b2b3, b

2
3)

From ϕ([a1, a2, a3]) = ϕ([b1, b2, b3]) we have that b1 = ±a1, b2 = ±a2, b3 = ±a3, and we know
that all bi have the same sign. Therefore we either have b = [a1, a2, a3] or b = [−a1,−a2,−a3]
which both lie on the line [x : y : z]. So we have that b ∈ [x : y : z] which is a contradiction.
We proved that ϕ is injective, and we know that RP2 is compact, so we proceed to proving that
ϕ is an immersion, once we have that we can claim that ϕ is an embedding.
We can use the definition with local charts to prove it. Consider the following charts and maps.

u0 = {[x : y : z], x ̸= 0} ≃ R2
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u1 = {[x : y : z], y ̸= 0} ≃ R2

u2 = {[x : y : z], z ̸= 0} ≃ R2

ψ0 : RP
2 → R2, ψ0([x : y : z]) = (

y

x
,
z

x
), ψ−1

0 (s, t) = [1 : s, t]

ψ1 : RP
2 → R2, ψ1([x : y : z]) = (

x

y
,
z

y
), ψ−1

1 (s, t) = [s : 1 : t]

ψ2 : RP
2 → R2, ψ2([x : y : z]) = (

x

z
,
y

z
), ψ−1

2 (s, t) = [s : t : 1]

These local charts cover all the points in RP2, to prove that ϕ is an immersion we need to show
the following, for all p ∈ R2

rank(J(ϕ ◦ ψ−1
i (s, t))) = 2

for i ∈ 1, 2, 3.
We check for ψ0.

ϕ ◦ ψ−1
0 (s, t) = [1 : s : t] → (1, s, t, s2, st, t2)

1

1 + s2 + t2

J(ϕ ◦ ψ−1
0 (s, t)) =

1

(1 + s2 + t2)2



−2s −2t
−s2 + t2 + 1 −2st

−2st s2 − t2 + 1
2s(t2 + 1) −2s2t

t(−s2 + t2 + 1) s(s2 − t2 + 1)
−2st2 2t(s2 + 1)


To see that the rank is always 2 we can check the the determinant of minor ∆4,6 = 4st(s2+t2+1)
which is only zero when st = 0. But when both s = 0 and t = 0 equal to zero, the determinant of
the minor ∆2,3 = 1, and if ∆2,3 is zero only if s = 1 and t = 0 or s = 0 and t = 1. But when that
is the case ∆1,5 ̸= 0. In conclusion there will always be a 2×2 minor with non-zero determinant,
which means that our matrix has rank 2. Similarly we can check that rankJ(ϕi) = 2

We can conclude that ϕ is an immersion, and thus embedding to R9 and diffeomorphism to R6.

2.6 Gradient and Hessian on the sphere

Tangent space of the sphere is given by

TxSt(1, 3) = {v ∈ R3 | xT v = 0}

Normal space is given as
NxSt(1, 3) = {aX | a ∈ R}

We take the metric:

gc(∆,∆) = tr ∆T (I − 1

2
XXT )∆

We pick ∇ to be the Levi-Civita connetion.
Let f be a function that we want to calculate the gradient of, on the sphere. Consider f as a
restriction of a function defined on the higher space, i.e. f is defined on a submanifold and f̄
is defined on the whole manifold. In our case, the submanifold is a sphere S2 and the higher
manifold is R3 f = f̄ |M Every vector ∆ ∈ TxR3 admits a decomposition ∆ = Px∆ + P⊥

x ∆
where Px∆ ∈ TxM and P⊥

x ∆ ∈ T⊥
x M. Then the gradient is defined as:

∇f(x) = gradf(x) = Pxgradf̄(x)

Using this identity, we can now realize Levi-Civita connection by:

∇ηgradf = PxD(gradf(x))[η] = Hessf(x)η

We take the following projection Px = (I − xxT ).
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Chapter 3

Grassmann Manifold

3.1 Grassmannian as a smooth manifold

Let us write G(p, n) = {p-dimensional (vector) subspaces of Rn×p}. A hyperplane V ⊆ Rn×p is
specified by n× p matrix A = [⃗a1, a⃗2, . . . , a⃗p] ∈ Matn×p where {a⃗1, a⃗2, . . . , a⃗p} is a basis for V.
I.e., given A ∈Matn×p, rkA = p, we get a p-hyperplane V ⊆ Rn×p by V =span {a⃗1, a⃗2, . . . , a⃗p}.
Conversely, given any p-dim subspace V ⊆ Rn×p, there is a n×p matrix A with rk(A) = p, from
which V is obtained in the above way. Two matrices, A and B, determine the same subspace
V ⇐⇒ ∃g ∈ GL(p), such that B = Ag. GL(p) stands for general linear group of degree p over
real field.
We thus have the following setup. Let the set of all 2-frames be

F (p, n) = {A | rkA = p} ⊆Matn×p(R) ≃ Rn×p

and consider on it the equivalence relation

B ∼ A if ∃ g ∈ GL(p), s.t. B = Ag

We have described a bijection of sets

F (p, n)/∼ ≃ G(p, n).

We will show that G(p, n) is a manifold equipped with a natural smooth structure. To achieve
that we need to prove that:

� G(p, n) has a countable base

� G(p, n) is Hausdorff

� G(p, n) is locally euclidean

Proposition 3.1.1. F (p, n) is an open subset of Rp×n

Lemma 3.1.1. The rank of an m×n matrix is r ⇐⇒ some r× r minor does not vanish, and
every (r + 1)× (r + 1) minor vanishes.

Since we know that for M ∈ F (p, n)∁, rkM < p lemma 3.1.1 tells us all p × p minors of
an arbitary element A ∈ F (p, n)∁ vanish. Let’s denote the determinant of each minor of A

with Si, i ∈ (1, 2, . . . ,
(
n
p

)
) Then consider a continuous map ψ : Matn×p → R(

n
p), ψ(M) →

(S1, S2, . . . , S(np)
). We can express F (p, n)∁ = ψ−1(⃗0) because all minors vanish (det=0). A

point 0⃗ ∈ R(
n
p) is a closed set, and because continuity preserves the closedness, F (p, n)∁ is

closed in Matn×p, an since its complement is closed, F (p, n) is an open subset of Matn×p(R)
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Proposition 3.1.2. ∼ is an open equivalence relation on F (p, n)

In other words we need to show that the map π : F (p, n) → F (p, n)/∼ is an open map.
Then π is a quotient map and is equipped with F (p,m)/∼ is equipped with quotient topology.

Lemma 3.1.2. A subset of a quotient space is open if and only if its preimage under the
canonical projection map is open in the original topological space.

Let U be an open in F (p, n). Then for every g ∈ GL(p) the set Ug = {xg|x ∈ U} is an

open subset of F (p, n). Therefore π−1π(U) =
⋃
g∈G

Ug is an open in F (p, n) because the union

of open sets is open. And by 3.1.2 π(U) = [U ] is open in G(p, n). π is a canonical quotient
map, and F (p, n)/∼ is open in Rn×p.

Lemma 3.1.3. if β = {βα}α is a base for a topology T on a topological space S, and if
f : S → X is an open map, then the collection {f(βα)}α is a base for the topology on X.

Proof. Let V be an open in X and y ∈ V . Choose x ∈ f−1(y). Since f−1(V ) is open there is a
basis element U ∈ β s.t. x ∈ U ⊂ f−1(V ) which implies that y ∈ f(U) ⊂ V . Since y is arbitary,
and f(U) ⊂ f(β) the collection {f(βα)}α is a base for the topology on X.

Proposition 3.1.3. G(p, n) has a second countable base.

Proof. We know that F (p, n) has a second countable base since it is a subspace of Rn×p. Thus
by lemma 3.1.3, we have that the base of G(p, n) is second countable.

Proposition 3.1.4. The graph of the equivalence relation on F (p, n) is a closed subset of
F (p, n)× F (p, n). i.e. R = {(A,B) ∈ F (p, n)× F (p, n) | A = Bg} is closed.

Proof. We can consider R as a set of matrices [AB] = [⃗a1, a⃗2, . . . , a⃗p, b⃗1, b⃗2, . . . , b⃗p] of rank p.
Lemma 3.1.1 tells us that every (p+1)×(p+1) minor of an element in R must vanish. Consider
the map that assigns to (A,B) the values of all (p+ 1)× (p+ 1) minors

ψ : F (p, n)× F (p, n) → R(
n
3)(p+2)

Since ϕ is continuous ( as all of its components are polynomials ) and R = ψ−1(0) , then R is
closed.

Example 3.1.1. For example take G(2, 4), then ϕ :Mat4×2 → R16

Proposition 3.1.5. G(p, n) is Hausdorff.

Proof. Because R is closed in F (p, n) × F (p, n), (F (p, n) × F (p, n)) \ R = R∁ is open. =⇒
∀(x, y) ∈ R∁ there is a basic open set u × v containing (x, y) s.t. (u × v) ∩ R = ∅ =⇒
∀x, y s.t. (x, y) ̸∈ R,∃ u around x and v around y s.t. u ∩ v = ∅ Thus for any two points
[x] ̸= [y] ∈ F (p, n)/∼ there exist disjoint neighborhood of x and y and F (2, 4)/∼ which is
exactly the definition of Hausdorff property.

Proposition 3.1.6. G(p, n) is locally euclidean.

Proof. Now that we have Hausdorff property and secound countable basis, we need to prove
that every point lying on a manifold has a neighbourhood that is homeomorphic to an open in
Rn. Then we can claim that G(p, n) is a manifold.
First we define charts. TakeA ∈Matn×p denote byAk, (k ∈ all possible picks of p from the set [1, . . . , n])
the p× p minor, formed by the k1th . . . kpth rows of A. The set

Uk = {A | det(Ak) ̸= 0} ⊂ F (p, n)
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is open, because its complement is closed. We also have that ∀g ∈ GL(p) if A ∈ Uk then
Ag ∈ Uk. Indeed, because det(Ag) = det(A) det(g), det((Ag)i,j) ̸= 0 which means Ag will
belong to a set Uk Next, define

Vk = Uk/∼ = π(Uk) ⊂ G(p, k)

The set Vk is open since the equivalence relation is open. i.e. π is an open map.

Uk has a canonical representative A ∼ ÂA−1
k . ·̂ discards all the rows whose index is in k.

Similarly Vk has a canonical representative: [A] ∼ [ÂA−1
k ]

Example 3.1.2. Following the previous example consider [A] ∈ G(2, 4). If a minor A2,4 is

invertible we have that [A] ∼ [ÂA−1
2,4] =

̂
∗ ∗
1 0
∗ ∗
0 1

 =

[
∗ ∗
∗ ∗

]
. Since charts

⋃
Uk cover F (p, n),

charts Vk cover G(p, n) (because π is open).

Now we define homeomorphisms between charts Vk and opens in Rp×(n−p) as follows:

ϕk : Vk ⊂ G(p, n) →Mat(n−p)×p(R) ≃ R(n−p)×p), ϕk([A]) = ÂA−1
k

We can show that ϕ is well defined.
Let A,A′ ∈ [A] we will show that ϕ is well defined. Equivalently ϕk(A) = ϕk(A

′]) Since A and
A′ are in the same class, we have that A′ = Ag, g ∈ GL(p), ϕk(A) = AA−1

k .

ϕk(A
′) = ϕk(Ag) = Ag((Ag)k)

−1 = Ag(Akg)
−1 = Agg−1A−1

k = AIA−1
k = AA−1

k = ϕk(A)

ϕ is continuous because matrix multiplication is continous. Next, we can see that ϕ is
surjective and ϕ−1 is continuous by explicitly defining inverse.

ϕ−1
k (

 — α1 —
...

— αn−p —

) =



11
...
1p
α1
...

αn−p


Finally, to show that ϕ is a homeomorphism, we have left to shot that ϕ is injective.
Assume that there ϕk is not injective then there are A ∈ [A] and B ∈ [B] such that there is no
g ∈ GL(p) for which Ag = B. i.e. AA−1

k = BB−1
k ⇐⇒ AA−1

k Bk = B but A−1
k Bk ∈ GL(p)

thus we reach contradiction. Therefore ϕk is homeomorphism and we proved that G(p, n) is
locally Euclidean.

Example 3.1.3. Let A =


2 6
1 3
2 1
4 3

 , [A] ∈ V3,4

AA−1
3,4 =


2 6
1 3
2 1
4 3

(
3
2 −1

2
−2 1

)
=


−9 5
−9

2
5
2

1 0
0 1
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the above multiplication is continuous by 3.1.2 and we can exlcude rows 3 and 4 so that we get
result in R4. Then the restriction to R4 is also continuous.

ϕ3,4([A]) =

(
−9 5
−9

2
5
2

)
Next the inverse map ϕ3,4(β)

−1 β ∈ Mat2×2 = ϕ3,4(A1,2A
−1
3,4g) = [A] for some matrix A,

such that A1,2 = β. But if we pick g = A3,4 then ϕ3,4(β) =


β1,1 β1,2
β2,1 β2,2
1 0
0 1

 More generally

ϕ−1
i,j : R4 → vi,j ⊂ G(2, 4) ϕ−1

i,j (β) →
[
β
I2×2

]
= [α]

Such that α[i :] = β[1 :], α[j :] = β[2 :] , α[(I \ {i, j})[1]] = I[1 :] and α[(I \ {i, j})[2]] = I[2 :]

Example 3.1.4. ϕ−1
3,4(α) = [A] as defined in 3.1.3

ϕ−1
3,4

(
−9 5
−9

2
5
2

)
=


−9 5
−9

2
5
2

1 0
0 1



We can confirm that α =


−9 5
−9

2
5
2

1 0
0 1

 and A =


2 6
1 3
2 1
4 3

 span the same subspace. Because if we

take g =

(
2 1
4 3

)
then αg = A

Since
⋃
Ui,j covers F (2, 4), ∪vi,j covers G(2, 4) Finally, we check transition maps.

ϕ1,2([A])
−1 = A3,4A

−1
1,2, ϕ−1

1,2(u) =


1 0
0 1
v1,1 v1,2
v2,1 v2,2



ϕ2,4([A]) = A1,3A
−1
2,4, ϕ−1

2,4(v) =


v1,1 v1,2
1 0
v2,1 v2,2
0 1


ϕ2,4◦ϕ−1

1,2(v) =

(
v1,1 v1,2
v2,1 v2,2

)
=

(
1 0
v1,1 v1,2

)(
0 1
v2,1 v2,2

)−1

=

(
1 0
v1,1 v1,2

)(
v2,2 −1
−v2,1 0

)
1

−v2,1
=

− 1

v2,1

(
v2,2 −1

v1,1v2,2 − v1,2v2,1 −v4

)
Now let’s check the transition map ϕ3,4 ◦ ϕ−1

2,3

ϕ3,4 ◦ ϕ−1
2,3(v) =

(
v1,1 v1,2
1 0

)(
0 1
v2,1 v2,2

)
= − 1

v2,1

(
v1,1v2,2 + v1,2v2,1 −v1,1

v2,2 −1

)
Proposition 3.1.7. G(p, n) can be equipped with the structure of a p(n−p) dimensional smooth
manifold.

The proof for the proposition follows from propositions 3.1.6, 3.1.5, 3.1.3, and by checking
that transition maps are infinitely differentiable.
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3.2 Grassmann manifold as a quotient manifold

We will describe the Grassmann manifold as a quotient of the Stiefel manifold with respect to
the orthogonal group.

St(p, n) F (p, n)

G(p, n)

p
π

Map p is surjective because every subspace has an orthonormal basis. I.e. starting with any
basis we can construct an orthonormal one via Gram-Schmidt algorithm. Now, if we redefine the
map p such that p : St(p, n)/O(p) → G(p, n), where O(p) is the orthogonal group of 2−frames,
we will have a bijection. To see why is it possible to quotient over O(p) instead GL(p) consider
A,B ∈ St(p, n) and consider that A and B are in the same subspace (go to the same point
under equivalence relation) A = Bg, g ∈ GL(p). We know that ATA = I, when we substitute
we get (Bg)TBg = I =⇒ gTBTBg = I =⇒ gT g = I which tells us that g has to be an
element of the orthogonal group. Therefore

G(p, n) = F (p, n)/Glp(R) G(p, n) = St(p, n)/O(p)

We also have the diffeomorphism St(p, n) ≃ On(R)/On−p(R).

Here we identify On−p(R) as the subgroup of On(R), consisting of matricess

(
1 0
0 Q

)
, where

Q ∈ On−p(R). In this description, a matrix A ∈ St(p, n), with mutually orthogonal and
orthonormal column, corresponds to an equivalence class of n×n matrices, all having the same
first n× p block equal to A.

3.3 Grassmann manifold as a set of projectors

Given
X = {M |M2 =M =MT , trM = p} ⊂Mn×n

We will prove that there is an embedding of G(p, n) to X. Based on the section 2.5 , we
hypothesize that the embedding is given by

ϕ : G(p, n) → X ϕ(A) = A(ATA)−1AT

Proposition 3.3.1. ϕ is well defined

Proof. Take A ∈ G(p, n) and B ∈ G(p, n) s.t. B = Ag. We know that ϕ(A) = A(ATA)−1AT

then

ϕ(B) = Ag((Ag)TAg)−1(Ag)T = Ag(gTATAg)−1(Ag)T = Agg−1(gTATA)−1gTAT = A(ATA)−1AT

(3.1)

Proposition 3.3.2. ϕ is injective

Proof. Assume that a function is not injective, then ∃A,B ∈ G(p, n) s.t. ϕ(A) ̸== ϕ(B)g for
any g in GL(R) equivalently A(ATA)−1AT = B(BTB)−1BT , we use the fact that any n × p
matrix A can be decomposed as A = QR where Q is of shape p×p and R is of shape n×p then

A(ATA)−1AT = (QR)((QR)TQR)−1(QR)T = QR(RTQTQR)−1RTQT =

QR(RTR)−1RTQT = QRR−1(RT )−1RTQT = QQT
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But we know that there exists Q such that ∃ g s.t. Q = Q′. Therefore we get that A =
QR B = Q′R′ and ϕ(A) = QQT = ϕ(B) = Q′Q′T but since Q is orthogonal we know that
∃ g Q = Q′g =⇒ A = Bg. we reach the contradiction and prove that ϕ is injective.

Proposition 3.3.3. ϕ is differentiable

Proof.

ϕ′(A) = (A(ATA)−1A)′ = A′(ATA)−1A−A(ATA)−1(A′AT )(ATA)−1A−

A(ATA)−1(A(AT )′)(ATA)−1AT +A(ATA)−1(AT )′

Since we know that A is differentiable this equation shows us that ϕ(A) is differentiable.

Proposition 3.3.4. P is a projection matrix to the subspace A, if given a vector u that lies in
the subspace, and v that is perpendicular to the subspace A, Pu = u and Pv = 0. Show that
ϕ(A) is a projector.

Proof. First we show that given a vector that already lies on A, the vector won’t change. Let
u = Av, then ϕ(u) = A(ATA)−1ATAv = Av = u Given a vector orthogonal to A projection
will go to zero. Take arbitary u such that

u = u⊥ + u∥ u∥ ∈ ImA =⇒ u∥ = Av

Then u⊥ = u− u∥. Now to show that ϕ(u⊥) = 0

ϕ(u− u∥) = ϕ(u)− ϕ(u∥) = A(ATA)−1ATu−A(ATA)−1ATAv = Av −Av = 0

We will in fact show that X can be identified with St(p, n)/∼ which is (as we showed in 3.2 )
G(p, n)

St(p, n) F (p, n)

G(p, n) X

p
π

ϕ

In this setup A ∈ St(p, n) ϕ(A) = A(ATA)−1AT = AAT

Dϕ(X)[V ] = lim
t→0

ϕ(X + tV )− ϕ(X)

t
= lim

t→0

(X + tV )(X + tV )T −XXT

t
=

lim
t→0

(X + tV )− (XT + (tV )T )−XXT

t
= lim

t→0

XXTX(tV )T + tV XT + tV (tV )T −XXT

t
=

lim
t→0

tXV T + tV XT + t2V V T

t
= XV T + V XT

Take V = 1
2XB B ∈ Sym(p)

1

2
XATXT +

1

2
XAXT = XAXT

It can be checked that XAXT ∈ X In other words for any matrix XAXT ∈ X there exists a
matrix V ∈ Rn×p, such that Dh(X)[V ] = XAXT . Thus, ϕ is a defining function for G(p, n)
making it an embedded submanifold.
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3.4 Tangent Space

To define a tangent and a normal space we need the metric. When working on the Stiefel
manifold the canonical metric is introduced with the purpose to restrict the orthogonal group
metric to the horizontal space the canonical metric is introduced with the purpose to restrict
the orthogonal group metric to the horizontal space. Canonical metric on Stiefel is given as:

gc(∆1,∆2) = tr ∆T (I − 1

2
AAT )∆

However the canonical metric on Grassman manifold is equivalent to the Euclidean metric

gc(∆1,∆2) = tr ∆T
1 (I −

1

2
Y Y T )∆2 = tr ∆T

1 ∆2 = ge(∆1,∆2)

Thus we proceed with such choice of canonical metric.

Proposition 3.4.1. The tangent space of G(p, n) is given by all the commutators [P,Ω] =
PΩ− ΩP Ω ∈ son

Proof. Consider the map δ : O(n) → G(p, n), δ(T ) = TP0T
T . So that we fix P0 to satisfy the

following three conditions:

1. P T = P (TP0T
T )T = TP T

0 T
T

2. P 2 = P (TP0T
T )(TP0T

T ) = TP0T
T

3. tr(TP0T
T ) = tr(P0T

TT ) = trP0 = k

Here these three rules are saying that we can get any projector Pn = TP0T
T Note that δ is

a submersion and therefore it induces a surjective map on tangent spaces. The tangent space
of O(n) at the n × n identity matrix I is TxO(n) = {Ω ∈ son} Note that Ω ∈ son means that
omega is skew-symmetric ΩT = −Ω. Now if we take a derivative

Dδ : TxO(n) → TPoG(p, n), Ω → P0Ω− ΩP0

Example 3.4.1. Tangent space in G(1, 3) Take P =

1 0 0
0 0 0
0 0 0

 find all TpX = {[P,Ω] | Ω ∈

son} Ω =

Ω1 −Ω2 −Ω3

Ω2 Ω4 −Ω5

Ω3 Ω5 Ω6

 ΩP =

Ω1 0 0
Ω2 0 0
Ω3 0 0

 PΩ =

Ω1 −Ω2 −Ω3

0 0 0
0 0 0

 Thus, the elements

in the tangent spaces look like: PΩ− ΩP =

 0 −Ω2 −Ω3

Ω2 0 0
Ω3 0 0



Example 3.4.2. Tangent space in G(2, 3) P ∈ G(2, 3) =

1 0 0
0 1 0
0 0 0

 Ω =

Ω1 −Ω2 −Ω3

Ω2 Ω4 −Ω5

Ω3 Ω5 Ω6


PΩ =

Ω1 −Ω2 −Ω3

Ω2 Ω4 −Ω5

0 0 0

 ΩP =

Ω1 −Ω2 0
Ω2 Ω4 0
Ω3 Ω5 0

 Thus, the elements in the tangent space look

like: PΩ− ΩP =

 0 0 −Ω3

0 0 −Ω5

−Ω3 −Ω5 0
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Example 3.4.3. Tangent space in G(2, 4) P =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 Ω =


Ω1 −Ω2 −Ω3 −Ω4

Ω2 Ω5 −Ω6 −Ω7

Ω3 Ω6 Ω8 −Ω9

Ω4 Ω7 Ω9 Ω10



PΩ =


Ω1 −Ω2 −Ω3 −Ω4

Ω2 Ω5 −Ω6 −Ω7

0 0 0 0
0 0 0 0

 ΩP =


Ω1 −Ω2 0 0
Ω2 Ω5 0 0
Ω3 Ω6 0 0
Ω4 Ω7 0 0

 [P,Ω] =


0 0 −Ω3 −Ω4

0 0 −Ω6 −Ω7

−Ω3 −Ω6 0 0
−Ω4 −Ω7 0 0


Now, based on our examples, we can see that: P0 =

[
Ip 0
0 0

]
where Ip is p×p identity matrix.

For G(p, n) we have the result

[
0p AT

A 0n−p

]
Ω =

[
A −B
B C

]
where AT = −A and it’s shape is

p× p and CT = −C and it’s shape is (n− p)× (n− p) PΩ =

[
A −BT

0 0

]
ΩP =

[
A 0
B 0

]
So the

tangent space looks like: [Ω, P ] =

[
0 −BT

B 0

]
where B has the shape p× (n− p) And because

we considered this under equivalence relation Q ∈ O(p), the tangent of G(p, n) is described as

TxG(p, n) = {∆ | ∆ = Q

[
0 −BT

B 0

]
}

3.5 Normal Space

NxG(p, n) = (TxG(p, n))
⊥ = {U ∈ Rn×p : ⟨U, V ⟩ = 0 for all V ∈ TxG(n, p)}

NxG(p, n = {U ∈ Rn×p | UTQ

[
0 −BT

B 0

]
= 0})

From here we can see that U = Q

[
A 0
0 C

]
Therefore

NxG(p, n) = {Q
[
A 0
0 C

]
| Q ∈ O(p), A ∈ so(p), C ∈ so(n− p)}

3.6 Geodesic

The orthogonal group geodesic is given as

Q(t) = Q(0) exp t

(
0 −BT

B 0

)
It has a horizontal tangent at every point along the curve Q(t)

Q̇(t) = Q(t)

(
0 −BT

B 0

)
Thus Grassmann geodesics = [Q(t)] The following theorem will be useful for computing the
geodesic formula.

Theorem 3.6.1. If Y (t) = Qe
t

 0 −BT

B 0


In,p with Y (0) = Y and Ẏ (0) = H, then

Y (t) =
(
Y V U

)(cosΣt
sinΣt

)
V T
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3.7 Parallel Transport

Theorem 3.7.1. Let H and Delta be tangent vectors to the Grassmann manifold at Y . Then
the parallel translation of ∆ along the geodesic in the direction Ẏ (0)−H is

τ∆(t) =

((
Y V U

)(− sinΣt
cosΣt

)
UT + (I − UUT )

)
∆

3.8 Gradient

The gradient of F at [Y ] is defined to be the tangent vector ∇F such that

trF T
Y ∆ = gc(∇F,∆) = tr(∇F )T∆ (3.2)

For all tangent vectors ∆ at Y .
Solving the equation 3.2 for ∇F such that Y T (∇F ) = 0 we get

∇F = FY − Y Y TFY (3.3)

3.9 Hessian

Hessian is defined as

HessF (∆1,∆2) = FY Y (∆1,∆2)− tr (∆T
1 ∆2Y

TFY )

For Newton’s method, we must determine ∆ = −Hess−1G, which for the Grassmann manifold
is expressed as the linear problem:

FY Y (∆)−∆(Y TFY ) = −G
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Chapter 4

Optimization Algorithms

Classical Gradient Descent is defined as follows:

1. ∆xk = d
dxk

f(xk)

2. xk+1 = xk − lr ·∆xk

It computed the gradient of the function, and then in the next steps move in the direction of
gradient. When the min/max is sufficiently close, it stops.
Newton’s root finding method is given in the following two steps

1. ∆xk = − f(xk)
f ′(xk)

2. xk+1 = xk +∆xk

We perform optimization using Newton’s method by applying it to the derivative of twice
differentiable function f to find the critical points.
Now we proceed by defining Gradient Descent and Newton’s method on Grassmann manifolds.
We perform optimization with Newton’s root-finding method by applying it to the derivative
of the twice differentiable function f to find the critical points.

4.1 Gradient Descent

Our objective is to minimize F : G(p, n) → R.
In the given algorithm δ stands for learning rate and Q =

(
U, V

)
Algorithm 1 Gradient Descent method for minimizing F (Y ) on G1(p, n)

1: // Input: F (·) and the initial choice of Y such that Y TY = Ip
2: // Output: First p columns of Q whose span is the minimal subspace
3: procedure MINIMIZE
4: while ||B|| < ϵ do ▷ We define a stopping criteria
5: Compute the directional derivative B and get the tangent ∆
6:

7: Update Qk+1 = Qk exp{δ∆} such that f(Uk+1) > f(Ut)

8: return Q[:, : p]
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4.2 Newton 1

We have F : G1(p, n) → R, F (Y ) = F (Y Q), Y ∈ G1(p, n), Q ∈ O(p), Y TY = Ip

Algorithm 2 Newton’s method for minimizing F (Y ) on G1(p, n)

1: // Input: F (·) and the initial choice of Y such that Y TY = Ip
2: // Output: Y for which F (Y ) gives the minimum value
3: procedure MINIMIZE
4: while numSteps−− do ▷ We have to choose the number of steps, or define some

stopping criteria
5: G = FY − Y Y TFY

6: ∆ = −Hess−1G such that Y T∆ = 0 and FY Y (∆)−∆(Y TFY ) = −G
7:

8: Move from Y in the direction ∆ to Y (1) using the formula
9: Y (t) = Y V cos(Σt)V T + U sin(σt)V T ▷ UΣV T is SVD of ∆

10: return Y

4.3 Newton 2

For this one we define F : Sym(n) → R and f : G2(p, n) → R s.t. f = F |G(p,n). adp(X) =
[P,X] = PX −XP MQ subscript means that we are taking only Q part from the QR decom-
position of M

Algorithm 3 Newton’s method for minimizing F (M) on G2(p, n)

1: // Input: F (·) and the initial choice of M such that MT =M,M2 =M,TrM = p
2: // Output: M for which F (M) gives the minimum value
3: procedure MINIMIZE
4: while numSteps−− do ▷ We have to choose the number of steps, or define some

stopping criteria
5: Solve
6: ad2MHessF (M)(adMΩ)− adMad∇F (M)adMΩ = −ad2M∇F (M)
7: for Ω ∈ skew−sym(n)
8:

9: Solve

10: M = ΘT

[
Im 0
0 0

]
Θ ▷ Θ is orthonormal

11: for Θ ∈ SOn

12:

13: M = ΘT (Θ(I − ad2MΩ)ΘT )QΘMΘT (Θ(I − ad2MΩ)ΘT )TQΘ

14: return M
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Chapter 5

Minimize Rayleigh Quotient

The Rayleigh quotient for a given symmetric matrix M and a nonzero vector x is defined as

R(M,x) =
xTMx

xTx

Theorem 5.0.1. For any given symmetric matrix M ∈ Rn×n

maxx∈Rn:x ̸=0
xTMx

xTx
(when x = ”largest” eigenvector of M)

minx∈Rn:x ̸=0
xTMx

xTx
when x = ”smallest” eigenvector of M

Proof. LetM = QΛQT be the spectral decomposition, where Q = [q1, . . . , qn] is orthogonal and
Λ = diag(λ1, . . . , λn) is diagonal with sorted diagonals from large to small. Then for any unit
vector x,

xTMxxT (QΛQT )x = (xTQ)Λ(QTx) = yTΛy

where y = QTx is also a unit vector:

||y||2 = yT y = (QTx)T (QTx) = xTQQTx = xTx = 1

So the original optimization problem becomes:

maxy∈Rn:||y||=1y
TΛy (Lambda diagonal)

To solve this problem write y = (y1, . . . , yn)
T . It follows that:

yTΛy =
n∑

i=1

λiy
2
i

Because λ1 ≥ λ2 ≥ . . . λn, when y21 = 1, y22 = · · · = y2n = 0 the objective function attains its
minimum value yTΛy = λ1 In terms of the original variable x, the maximizer is

x∗ = Qy∗ = Q(±eq) = ±q1

In conclusion, when x = ±q1 (largest eigenvector), xTMx attaints its maximum value λ1 (largest
eigenvalue)

In the next subsections we will focus on Computing the eigenvectors and eigenvalues
of a symmetric matrix by minimizing rayleigh quotient
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5.1 Gradient Descent on the sphere

We have the following setup:
Compute minx∈Sn

1
2x

TMx
The cost function f : Sn → R is the restriction of f̄ = 1

2x
TMx from RntoSn

Tangent spaces are given by TxS
n = {v ∈ Rn : xT v = 0}

To make Sn into a Riemmannian submanifold of Rn we take a dot product ⟨u, v⟩ = uT v
Projection to TxS

n: Projx(z) = z − (xT z)x
Gradient of f̄ = ∇f̄(x) =Mx
Gradient of f : gradf(x) = Projx(∇f̄(x)) =Mx− (xTMx)x Thus algorithm becomes

Algorithm 4 Gradient Descent method for minimizing the Rayleigh quotient

1: // Input: The initial choice of Y such that Y TY = Ip and the choice of learning rate lr
2: // Output: Y for which of F (Y ) gives the dominant eigenvalue
3: procedure MINIMIZE
4: for i in num.steps do ▷ Define a number of steps or a stopping criteria
5: if i mod 100 == 0 then lr = lr/100 ▷ Learning rate decay
6: Y = Y − lr · ∇f(X)

7: return Y

Example 5.1.1. Find the dominant eigenvector and eigenvalue of A =

181 101 146
101 74 103
146 103 146

 by

using gradient decent on Rayleigh quotient.

Figure 5.1: Convergence of the GD algorithm on Rayleigh quotient example
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5.2 Newton 1

Given the function f̄ = xTMx gradf̄ = 2Mx− 2(xTMx) = 2(I − xxT )Ax = 2PMx

D(gradf) = 2M − 4xMxη + 2xTMx

Reminder gc(∆,∆) = tr∆T (I − 1
2Y Y

T )∆

gc(D(gradf), η) = gc(2M − 2xTMx+ 4MxxT , η) = 2MPη − 2ηxTMx

Pgc(D(gradf), η) = 2MPη − 2ηxTMx

Therefore we have a Newton iteration:

PxMPxη − ηxMx = −PMx

P is a projection, R is a retraction.

Algorithm 5 Newton’s method for minimizing the Rayleigh quotient

1: // Input: The initial choice of Y such that Y TY = Ip
2: // Output: Y for which F (Y ) gives the minimum value
3: procedure MINIMIZE
4: while numSteps−− do ▷ define some stopping criteria
5: M = P (Y )MP (Y )− xTAx
6: y = −P (Y )Ax
7: η = solve(M,y)
8: Y = R(Y, η)

9: return Y

Example 5.2.1. Find eigenvectors and eigenvalues of A =

181 101 146
101 74 103
146 103 146

 using Newton 1

OUTPUT: [−0.74148822, 0.44835462, 0.49917267]

Figure 5.2: Convergence of the Newton 1 algorithm on Rayleigh quotient example
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5.3 Newton 2

For the Rayleigh quotient the equation that we need to solve in the first step of 4.3 becomes:

−adPjadAadPjΩj = −ad2Pj
A = Θj(adPjadAadPjΩj)Θ

T
j = Θj(ad

2
Pj
A)ΘT

j

Pj = ΘT
j

[
Im 0
0 0

]
Θj

adIm 0
0 0

adΘjAΘT
j
adIm 0

0 0


[

0 Zj

−ZT
j 0

]
= ad2Im 0

0 0

(ΘjAΘ
T
j )

for Zj ∈ Rm×(n−m). Denoting

ΘjAΘ
T
j =

[
A11 A12

AT
12 A22

]
so we just have to solve the Sylvester equation

A11Zj − ZjA22 = A12

Algorithm 6 Newton’s method for minimizing Rayleigh quotient on G2(1, 3)

1: // The initial choice of Θ ∈ SO(n)
2: // Output: Θ whose first p are the eigenvector
3: procedure MINIMIZE
4: while numSteps−− do ▷ define some stopping criteria

5: Compute

[
A11 A12

AT
12 A22

]
= ΘjAΘ

T
j

6: Solve the Sylverster equation A11Zj − ZjA22 = A12 for Zj ∈ Rm×(n−m)

7:

8: Compute ΘT
j+1 = ΘT

j

[
Im Zj

−ZT
j In−m

]
Q

and Pj+1 = ΘT
j+1

[
Im 0
0 0

]
Θj+1

9: return M

Example 5.3.1. Find eigenvectors and eigenvalues of A =

181 101 146
101 74 103
146 103 146

 using Newton 2

OUTPUT: [−0.74364137, 0.43442584, 0.5082044]
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Figure 5.3: Convergence of the Newton 2 algorithm on Rayleigh quotient example
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Chapter 6

Notation

Symbol Matrix Definition Name

F (p, n) {A ∈Matn×p | rkA = p} 2 frames

St(p, n) {A ∈ F (2, 4) | ATA = Ik} Stiefel Manifold

GL(p) {A ∈Matn×n | detA ̸= 0} General Linear Group

O(p) {Q ∈ GL(p) | QTQ = I} Orthogonal group

son {Ω ∈ Rn×n | ΩT = −Ω} Real skew-symmetric matrices

Sym(p) {A ∈ Rp×p | AT = A} Symmetric matrices

SO(n) {Q ∈ O(n) | det(Q) = 1} Special Orthogonal Group
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